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The effect of nonuniform compression on three-dimensional bending oscillations for a 
thin elastic floating plate and wave disturbance in a layer of uniform liquid beneath it 
with movement of the pressure field is studied. The dependence of the hodograph of the 
wave vector and the structure of the phase portraits of oscillations on the displacement 
velocity and direction of the wave generator, and values of the longitudinal, transverse, 
and shear compressive forces is analyzed. Bent-gravity waves with movement of the pressure 
field for conditions of longitudinal and transverse compression have been studied in [1-4]. 

i. Let at the flow surface of a uniform ideal incompressible liquid of constant depth 
H float a thin elastic nonuniform compressed plate. Over the surface of the plate at angle 

to the direction of flow a wave disturbance generator moves with constant velocity v 

p = po/(Xl, g) exp ( - - i~ t ) ,  x l  = x - -  vt. ( 1 . 1 )  

We consider the effect of compressive forces on three-dimensional steady-state bending os- 
cillations of the plate and wave disturbance of the liquid flow. On coordinate system x~, 
y, z, connected with moving pressure field (i.I) the problem of low amplitude vibrations is 
reduced to solving the Laplace equation 

with boundary conditions 

A~=0,, --H<z<0 

L~ + (l/g)F* = pl/(x, g)exp (--iat),  z = O; 

F~ = OqJOz, z = O; Ocp/Oz ----- O, z = - - H .  

(1.2) 

i(1.3) 

0 n 02 ~o 02 
Here L = D~V' + Ql oz-.- ~ + Q2 ~ v .~Q~ o-7~v + • F~ + t; 

o o u o . V2 = 0 2 0 z 
F = ~ + ( u ~ + v ) ~ +  v ~ ,  O:7 + o r  ~' 

1 
{D~, Q. O~, O~, ~,p~} = bY {o, O~, O~, O~, • po}; 

D = Eha[t2(i --v2)]-1;  • = 91h; u~ = u cos ~; ug = u sin ~; 

Qx, Qy, Qxy a r e  c o m p r e s s i v e  f o r c e s  in  t h e  c o r r e s p o n d i n g  d i r e c t i o n s ;  E, h,  v,  Pl a r e  normal  
e l a s t i c i t y  modu lus ,  t h i c k n e s s ,  P o i s s o n ' s  r a t i o ,  and p l a t e  d e n s i t y ;  p i s  l i q u i d  d e n s i t y ;  u 
i s  f l o w  v e l o c i t y  v e c t o r  modulus ;  ~ i s  p l a t e  d e f l e c t i o n .  Here and s u b s e q u e n t l y  t h e  i n d e x  1 
for x I is omitted. 

By solving problem (1.1)-(1.3) by the method of Fourier integral transformation for 
plate deflection ~ we obtain an expression 

Pl ( [  f(rn; n) M(r)  ( 1 . 4 )  
; ~ ~ -  a ~  z2 _ a~ ~ exp [i (mx + ny  - -  ot)] dm dn, 

�9 ~ = M(r ) l (m ,  n), M(r)  �9 (t  + • th r H ) - l r g  th rH,  

l(m, n) = I + Dlr  ~ - -  Qlm 2 - Qin 2 2Q3mn, 

~o = ~ - -  (u~ + v)m - -  u ~ n , r  ~ = m ~ + n ~ 

( f (m ,  n)  i s  t h e  F o u r i e r  t r a n s f o r m  o f  f u n c t i o n  f ( x ,  y ) ) .  

The e q u a t i o n  x 2 - o~ = 0 c o n n e c t i n g  wave number r w i t h  f r e q u e n c y  o,  f l o w  v e l o c i t y  u,  
and t h e  r a t e  o f  d i s t u r b a n c e  s o u r c e  d i s p l a c e m e n t  v d e t e r m i n e s  t h e  h o d o g r a p h  o f  t h e  wave v e c t o r  
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in plane (m, n). Steady-state wave disturbances in a distant zone described by expression 
(1.4) are characterized [5, 6] by coordinates (m, n) of the hodograph G(m, n) = 0. 

2. We consider a source of constant intensity (o = 0) moving over the surface of the 
plate with absence of drift (u = 0). Then it is possible to reduce the equation for the 
hodograph to the form 

- -  ~ S  2 ~--  1 I 1/2 
, , 

n : -l-(r ~ - -  m2)lfl s ign Qa, 

$1 = rg(l + n l r  4 + Q2r ~) t h  rH, S 2 = v2(l + • th  rH) + (Q1 - Q~)rg th  rH, 

$3 = Q~rg t h  rH. 

The upper and lower signs at n and in the square brackets for the expression of m relate to 
arcs of the hodograph which lie respectively above and below the abscissa axis. The hodo- 
graph is determined with v > v 0, where 

I f  Q3 = 0 ,  t h e n  m = ( $ 1 / S 2 )  1 / 2 ,  n = • ( r  ~ - m2) 1 /2  a n d  t h e  h o d o g r a p h  i s  s y m m e t r i c a l  w i t h  
r e s p e c t  t o  t h e  a b s c i s s a  a x i s .  I n  a d d i t i o n  Q2 d o e s  n o t  a f f e c t  v 0 ,  a n d  t h e  d e p e n d e n c e  o f  
t h i s  c r i t i c a l  v e l o c i t y  on Q1 i s  c o n s i d e r e d  i n  [ 7 ] .  

3 .  I n  o r d e r  t o  s t u d y  t h e  d e p e n d e n c e  o f  t h e  h o d o g r a p h  a n d  s t r u c t u r e  o f  wave  d i s t u r b -  
a n c e s  on t h e  m a g n i t u d e  o f  l o n g i t u d i n a l ,  t r a n s v e r s e ,  a n d  s h e a r  c o m p r e s s i v e  f o r c e s  n u m e r i c a l  
c a l c u l a t i o n s  w e r e  made  w i t h  d i f f e r e n t  d i s p l a c e m e n t  v e l o c i t i e s  f o r  t h e  s o u r c e  o f  t h e  d i s t u r b -  
a n c e  f o r  t h e  v a l u e s  E = 5 " 1 0 9  N/m e , H = 350 m; h = 2 . 5  m, v = 0 . 3 4 ,  P l  = 870 kg. 'm - 3 ,  p = 
1025 k g ' m  - a ,  w h i c h  c h a r a c t e r i z e  a n  i c e  p l a t e  [ 8 ,  9 ] .  

A n a l y s i s  o f  t h e  r e s u l t s  o f  n u m e r i c a l  c a l c u l a t i o n s  s h o w e d  t h a t  w i t h  Q3 ~ 0 t h e  d i s t r i -  
b u t i o n  of v 0 with respect to QI is qualitatively similar to the distribution in the case of 
uniform compression. The quantitative dependence of v 0 on QI for Q2 = 0, Q3 ~ 0 is given 
in Table i, where Q0 = D/~z. The role of Q3 indepedent of its sign appears in a reduction 
in v 0. Transverse compression (tension) with consideration of shear forces (Qa ~ 0) re- 
duces (increases) v0, and the effect of Q~ is reinforced with an increase in Qs. The dis- 
tribution of v 0 with respect to Q2 and Q3 is illustrated in Fig. 1 (solid, broken, broken- 
dotted, and dotted lines relate to Q1 = Q~ = 0; Q~ = 0, Q3 = 0; Q~ = O, Q~ = (3/2)Q0i QI Q3 = 
Qo (a), Q~ = O~ : O; Q~ = O, Q2 : (3/2)Q0; Q1 = (3/2)Qo,-Q~ : O; Q1 = Q~ = (3/2)Q0 (b)). It can be seen 
that in the presence of shear forces there is the possibility of conditions for generation 
of wave disturbances by a source moving with any non-zero velocity. 

Hodographs of the wave vector without taking account of and with consideration of 
shear forces are pr_esented in Figs. 2 and 3 respectively with v = 45 m'sec -I from the range 
v 0 < v < c (c = /~). Lines i-5 correspond to QI = Q2 = 0; QI = --Qo, Q2 : Q0; Q1 = 2Q0, Q2 T. 
O; Q~ = O, Q2 = 1,9Qo; Q~ = O,, Q~ = - Q o  ~ ( F i g .  2 )  a n d  Q~ = Q 2 =  Qa = O; Q1 = Q~ = Q3 = Qo; Q1 = Q2 = 
~o~0'r: Q~ : Qo;-QI = Q2 = O, Qa = 2Q0;QI = 0, Q2 : 1.9Q0, Q~ = 1.5Q0 (Fig. 3). It can be seen that 

'all hodographs the presence of two points of inflection is typical in both the upper and 
flower half planes. In hodographs where the breaks are particularly clear these points are 
marked by circles and triangles, and the asterisks are points of contact of a hodograph and 
a beam emerging from the origin. A reduction in v leads to convergence of the points of in- 
flection on arcs of the hodograph in the upper and lower half planes. Merging of these 
points for Q3 = 0 occurs with velocity v = v1:determined from the set of equations 

n " m ' - - n ' m "  = O; n " ' m ' - - n ' m ' "  = 0 ( 3 . 1 )  
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TABLE 1 

~I/Qo 

--2 
--1,5 
--t  
--0,5 

0 
0,5 
i 

.~ ,5  
2 

Q,/Qo 
t.5 0 

27,589 
25,915 
24,011 
2i,797 
i9,157 
t5,869 
t1~81 

t 

26,309 
24,332 
22,039 
19,318 
t5,959 
11;04t3 

0 

26,t96 
24,06i 
2i,593 
i8,668 
i5,030 
9.227 

0 
O 
0 
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in relation to r and v (a prime indicates derivative with respect to r). With uniform com- 
pression an equation for vl has been obtained in [3]. Shear forces give rise to ambiguity 

for the solution of set (3.1) as a result of which there are different values of vl for the 
upper v~ and lower v~ arcs of the hodograph. If Q3 > O, then v~ < v~ and v~ > v~ for Q3 < 
O. With fulfillment of the condition v < v I there are no points of inflection in arcs of 
the hodograph. The area bounded by the hodograph decreases with a reduction in v contract- 
ing to the point with velocity v tending towards v 0. 

With an increase in v the area of the hodograph between the circles contracts to a 
point approaching the origin with v tending towards c. For v > c the hodograph passes 
through the origin and only one point of inflection marked with a triangle is retained on 
the arcs. Here tangents to the arcs at the origin form with the abscissa axis an angle 

= • The distance between the points of intersection of the hodograph 
with axis m increases (decreases) with an increase in longitudinal compression (tension). 
Transverse compression deforms the hodograph so that in it (with fulfillment of the condi- 
tion m' = m" = O) points may appear with a tangent perpendicular to the abscissa axis. They 
are marked with squares. In the absence of shear compression these points appear if 

( '1[ ~1(r 'Q2)=v~"  •  rg thrH"  t 2r2(2Dtr2 Q2 ) 

w h e r e  r ~ i s  t h e  p o s i t i v e  r o o t  o f  t h e  e q u a t i o n  

..)] 
sh 2t i t  ' 

% (r, Q~) +~2% (r, Q2) = 0, ~ = (2rH 4- sh  2 r / / )  (4Q~r - -  ODor 3 - -  ~ ' ~ ) ,  

~a = (Q2 - 4D1 r2) r sh  2FH - -  ( t  + Dlr 4 - -  Q~_r 2 - -  ~1m4) (3 - -  2 FH t h  rH) H ,  

"r~ = (t  + D l r  4 - -  Q2r 2) [v 2 + (• 2 - -  T1) rg th  rH] -1  rg  th  rH .  
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Distributions of Q~ with respect to Q2 are illustrated in Fig. 4 where curves 1 and 2 
relate to values of source velocity of 30 and 45 m'sec -I, and solid and broken lines are 
given for basin depths of 350 and 50 m. Curves Q~(Q2) for different v intersect at a point 
corresponding to Q~ = Q2. This value coincides with the critical force Q* under conditions 
of uniform compression [3, 4, 7]. If the waves are short, then Q* = 2v~'/3 Q0. In the case 
of long waves Q* = v~Q 0. A reduction in basin depth leads to a marked increase in Q*. 

Under conditions of shear compression there is no symmetry for the position of points 
with a vertical tangent with respect to the abscissa axis for the upper and lower arcs of 
the hodograph. Here it is only possible for these points to be present in one of the arcs 
(curve 5 in Fig. 3). 

A. Differentiation of the equation for the line of equal phase mx + ny = const with 
respect to r and R shows orthogonality of the group velocity vector towards the tangent of 
the hodograph and phase velocity towards the crest (trough) of a wave. In order to build 
up a phase portrait of wave disturbances along the direction of the group velocity we plot 
a section of length 2~k[r cos (8 - X)] -I (8 = arctan (m/n), y = arctan [dG/dn(dG/dm)-1], k is 
equal phase line number). 

We analyze the structure of the phase portraits for the corresponding hodographs, With 
v0 < v < c the section of the arc of the hodograph (see Figs. 2 and 3) to the right of the 
asterisk characterizes a bent wave ahead of the source, and to the left a bent-gravity wave 
following behind it [3]. If here v > vz, then the outer normals to the points marked by 
circles specify the outer boundaries, and the triangles specify the inner boundaries of the 
angular zones of a ship's wake with three-wave disturbances [3]. Between these inner 
boundaries disturbances are only formed by transverse gravity waves. Bent waves in a wave 
trail are characterized by sections of arcs between triangles and asterisks, and those run- 
ning ahead of the source by sections to the right of the asterisks. With absence of shear 
forces the structure of the phase portraits is qualitatively the same as with uniform com- 
pression [3, 4]. In addition , growth of Ql reduces the length of waves (bent to a greater 
extent than gravity waves) in the track of source movement. 

The zone of the wave trail only covered by transverse waves contracts with an increase 
in compressive force Q2 as a result of a shift in the inner boundaries of the region with 
three-wave disturbances; with QI = Q~ it disappears. With a further increase in compres- 
sive forces the boundaries in question retreat beyond the track. As a result of this in 
the vicinity of the track there is superimposition on each of the other parts of the right-hand 
and left-hand zones with three wave systems [3]. Disturbances in the overlap zone are shown 

i 

870 ! 



o 1,2 i4 <",; 

- j  

\ \  

Fig. 4 

y,1OSm 

Fig. 5 

U'/OJ m 

, 

Fig. 6 

in Figs. 2 and 3 by areas of the hodograph between the triangles. Rectangles close to the 
abscissa axis correspond to intersection of the crest by a longitudinal wave, and those at 
a distance correspond to intersection of bent waves with the track. Displacement of the 
outer boundary of the region of three-wave disturbances under the influence of Q2 is insig- 
nificant. Force Ql also has a weak effect on the size of angular zones. 

Phase pictres of wave disturbances under conditions of shear compression (Q3 > 0) cor- 
responding to hodographs 2 and 5 from Fig. 3 are presented in Figs. 5 and 6 with max(v~, 
v~) < v < c~ The outer and inner boundaries of the angular zones are shown by bold solid 
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and broken lines. Bent, longitudinal, and transverse waves relate to thin solid, broken, 
and broken-dotted lines. Asymmetry of the wave trail in relation to the movement course of 
the source can be seen. The angular zone with three-wave disturbance (Fig. 5) to the left 
with respect to the course is greater than to the right. Its inner boundary is arranged 
closer to the track converging with it with an increases in both Q3 and Q2- Values of com- 
pressive forces Q3 and Q2 are possible such that this boundary moves beyond the track 
whereas the inner boundary of the right-hand zone does not reach the track (Fig. 6). 

Phase pictures with Q3 < 0 are symmetrical with those provided for Q3 > 0 in relation 
to the track. It is noted that with Q3 > 0 in the range v~ < v < v* and angular zone for 
generation of the three systems of waves only arises to the left, and for v~ < v < v~ when 
Q3 < 0 to the right of the track along the direction of source movement. With v > c trans- 
verse gravitation waves are not created in the wake behind the source. 

5. Now let the source move through drifting ice at an angle ~ to the direction of the 
drift. We turn the coordinate system at angle ~ =arctan'[(u sin ~)/(v + u cos ~)]. In the 
system obtained the source will move with velocity U 0 =-[(v + u cos =)2 + (u sin ~)21z/2 
along the new abscissa axis and longitudinal, transverse, and shear forces take the values 

ql~ = q~ c~ ~ + Q2 sin~ ~ + Q3 sin 2~, 
Q2~ = Q1 s i~ ~ + Q2 cos2 fi -- Q3 sin 2~, 
Qa~ = (1/2)(Q2 - Q~) sin 2~ + Qa cos 2~. 

Analysis of the hodograph of the wave vector and the phase structure of wave disturb- 
ances in the new coordinate system is carried out as with absence of flow for v = U0, Qi = 
Qi~, i = i, 2, 3. 
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